Streaming parallel GPU acceleration of large-scale filter-based spiking neural networks.
نویسندگان
چکیده
The arrival of graphics processing (GPU) cards suitable for massively parallel computing promises affordable large-scale neural network simulation previously only available at supercomputing facilities. While the raw numbers suggest that GPUs may outperform CPUs by at least an order of magnitude, the challenge is to develop fine-grained parallel algorithms to fully exploit the particulars of GPUs. Computation in a neural network is inherently parallel and thus a natural match for GPU architectures: given inputs, the internal state for each neuron can be updated in parallel. We show that for filter-based spiking neurons, like the Spike Response Model, the additive nature of membrane potential dynamics enables additional update parallelism. This also reduces the accumulation of numerical errors when using single precision computation, the native precision of GPUs. We further show that optimizing simulation algorithms and data structures to the GPU's architecture has a large pay-off: for example, matching iterative neural updating to the memory architecture of the GPU speeds up this simulation step by a factor of three to five. With such optimizations, we can simulate in better-than-realtime plausible spiking neural networks of up to 50 000 neurons, processing over 35 million spiking events per second.
منابع مشابه
Scalability and Optimization Strategies for GPU Enhanced Neural Networks (GeNN)
Simulation of spiking neural networks has been traditionally done on high-performance supercomputers or large-scale clusters. Utilizing the parallel nature of neural network computation algorithms, GeNN (GPU Enhanced Neural Network) provides a simulation environment that performs on General Purpose NVIDIA GPUs with a code generation based approach. GeNN allows the users to design and simulate n...
متن کاملSimulation of Spiking Neural Networks on Different Hardware Platforms
Substantial evidence indicates that the time structure of neuronal spike trains is relevant in neuronal signal processing. Bio-inspired spiking neural networks are taking these results into account. Applications of these networks to low vision problems, e.g. segmentation, requires that the simulation of large-scale networks must be performed in a reasonable time. On this basis, we investigated ...
متن کاملA Large-Scale Spiking Neural Network Accelerator for FPGA Systems
Spiking neural networks (SNN) aim to mimic membrane potential dynamics of biological neurons. They have been used widely in neuromorphic applications and neuroscience modeling studies. We design a parallel SNN accelerator for producing large-scale cortical simulation targeting an off-theshelf Field-Programmable Gate Array (FPGA)-based system. The accelerator parallelizes synaptic processing wit...
متن کاملSimulating spiking neural networks on GPU.
Modern graphics cards contain hundreds of cores that can be programmed for intensive calculations. They are beginning to be used for spiking neural network simulations. The goal is to make parallel simulation of spiking neural networks available to a large audience, without the requirements of a cluster. We review the ongoing efforts towards this goal, and we outline the main difficulties.
متن کاملComparison of GPU- and CPU-implementations of mean-firing rate neural networks on parallel hardware.
Modern parallel hardware such as multi-core processors (CPUs) and graphics processing units (GPUs) have a high computational power which can be greatly beneficial to the simulation of large-scale neural networks. Over the past years, a number of efforts have focused on developing parallel algorithms and simulators best suited for the simulation of spiking neural models. In this article, we aim ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Network
دوره 23 4 شماره
صفحات -
تاریخ انتشار 2012